

Straight-seam Electric Resistance Welding (ERW) Pipe Piling:

Support for deep foundations

Our ERW steel pipe piles are the strongest and most reliable in the industry. They support bridges and structures for civil, private and government projects worldwide.

Friction and load-bearing geotechnical applications

Mill test reports for quality assurance

Structural and metallurgical engineers on staff

Quick turnaround

Plain or beveled ends

Good weldability

Ranges from 10 to 20 NPS

Rolling cycles of 4-6 weeks

Drop-in rolling capabilities

Meet ARRA's strict standards

Quality Product, Readily Available

We focus on meeting all your needs, delivering quality product directly to your project site at a price that fits your budget. Our drop-in rollings and manufacturing process allow for efficient turnarounds, even of large volumes. You can place orders and check inventory, rolling schedules and available tons at atlaspipepiles.com

We're There When You Need Us

Our shipments are quick and cost-effective, so you save time and money. We can run a length of 16 x .500 85 feet long every 90 seconds, or our mills can produce in excess of 1,000/1,200 tons per shift. We can roll non-standard wall thickness to save on the cost of the piles (by having a thinner wall). Contact us anytime to find a stocking partner near you.

Made and Melted in America

When your domestic project requires products that meet ARRA's strict standards, we'll ship your pipe piles directly from our domestic facility in Chicago, Illinois.

Green and Sustainable

Our team supports your green initiatives. We use innovative practices and technologies to reduce waste and promote sustainability. Plus, steel's high recycled content and high reclamation rate make it the ideal material for green buildings and structures.

Steel Grade Specifications

CHICAGO, USA

A500 A252

Specialty Grades

High-strength low-alloy (HSLA) Copper-bearing (CU)

Outer Diameter¹

A500 – 1.315 to 20' A252 – 4.500 to 20'

Gauge²

.250 to .625

Length³

21 to 125'

HARROW, CANADA

A500 A252

CSA G40.21

Outer Diameter¹

A500 – 4.500 to 16 A252 – 4.500 to 16

Gauge²

.219 to .688

Length³

20 to 120'

A500 Gr. C

46,000 min. psi yield 62,000 min. tensile Elongation in 2" – 21%

A252 Gr. 2

35,000 min. psi yield 60,000 min. tensile Elongation in 2" — 25%

A252 Gr. 3

45,000 min. psi yield 66,000 min. tensile Elongation in 2" – 20%

ASTM A500 Gr. C Modified

50,000 min. yield

ASTM A252 Gr. 3 Modified

50,000 min. yield

ASTM A500 Gr. C Modified

60,000 min. yield

ASTM A252 Gr. 3 Modified

60,000 min. yield

ASTM A500 Gr. C Modified

70,000 min. yield

Copper-bearing (CU)

.2% copper

HSLA

High-strength low-alloy

Atlas Pipe Piles does not weigh each individual length of tube. Weight is controlled by utilizing minimum-gauge coil stock. Weight should not vary more than 15% over or 5% under theoretical weight, calculated using its length and weight per unit.

² Wall thickness at any point should not be more than 12.5% under the specified nominal wall thickness.

³ Atlas Pipe Piles will only ship prime full-length piling—no mid-weld splices.

DIAMETER	PIPE SIZE			PIPE	PIPE SCHEDULE SIZES			S						WEIGI	HT/FO	OT INE	DICATE	S MILL	CAPA	BILITY			<i>c</i> •	
		10	20	30	40	STD	60	80	xs		14 ga		0.100	12 ga 0.109	11 ga	1/8	10 ga	3/16	1/4	5/16	3/8	.400	1/2	5/8
1.245										0.065	1.031	1.168	0.100	1.324	1.443	1.497	0.100	0.250	0.313	0.313	0.400	0.400	0.500	0.62
1.250													1.229	1.330	1.450									
1.230		.109			.133	.133						1.070	1.223		1.430	1.500								
1.315	1.00	<u>.109</u> 1.404			.133 1.679	.133 1.679		179	179			1.239		1.404		1.590								
		.109			.133 1.68 .140	.133 1.68		.179 2.17	.179 2.17	0.869	1.093	1.239	1.299	1.405	1.533	1.590	1.692							
1.660	1.00	1.404			2.273	2.273		***	***															
					<u>140</u> 2.27	<u>140</u> 2.27		<u>.191</u> 3.00	<u>.191</u> 3.00	1.108	13.999	1.589	1.668	1.807		2.051	2.186							
1.900	1.50	. <u>109</u> 2.085			.145 2.72	.145 2.72		<u>.200</u> 3.63	<u>.200</u> 3.63	1.275	1.612	1.833	1.924	2.087		2.372	2.530	3.432						
		2.085			.145 2.72	.145 2.72		.200 3.63	.200 3.63		1.612	1.833	1.924	2.087	2.830	2.372	2.530	3.432	4.410					
2.000											1.701				2.412	2.505								
2.250											1.923			2.495		2.840	3.031	4.144						
2.375	2.00	.109 2.638			<u>.154</u> 3.656	<u>.154</u> 3.656				1.605	2.034	2.315	2.432	2.640		3.007	3.210	4.385						
2.500											2.145	2.442		2.786	3.053	3.174	3.389	4.646	6.013					
2.875	2.50	.120 3.531			.203 5.798	. <u>203</u> 5.798										3.675	3.926	5.400	7.015					
3.000		0.001			3.730	3.730										3.842	4.105	5.651	7.349					
3.500	3.00	<u>.125</u> 4.510			.216 7.58	. <u>216</u> 7.58		.300 10.26	.300 10.26							4.510	4.822	6.656	8.686					
4.000	3.50	4.510			7.58	7.58		10.26	10.26							5.178	5.538	7.661	10.022					
4.000	5.50				.237	.237		.337	.337											14.010	16 576	17 570	21.700	
4.500	4.00				. <u>237</u> 10.80	. <u>237</u> 10.80		. <u>337</u> 14.997	. <u>337</u> 14.997							5.846	6.254	8.644	11.358	14.010	16.536	17.532	21.380	
					.237 10.80	. <u>237</u> 10.80		. <u>337</u> 14.997	. <u>337</u> 14.997								5.846	6.254	8.666	11.358	14.010		16.536	
5.000	4.50				.247 12.55	.247 12.55		. <u>355</u> 17.628	. <u>355</u> 17.628		4.363				6.260	6.514	6.970	9.671	12.694	15.683	18.540		24.053	
5.563	5.00				. <u>258</u> 14.631	. <u>258</u> 14.631		. <u>375</u> 20.797	. <u>375</u> 20.797							7.267	7.777	10.775	14.199	17.566	20.797	22.077	27.062	
					. <u>258</u> 14.631	. <u>258</u> 14.631		. <u>375</u> 20.797	. <u>375</u> 20.797							7.267	7.777	10.802	14.199	17.566	20.797		27.062	
6.625	6.00				. <u>280</u> 18.99	. <u>280</u> 18.99		.432 28.60	<u>.432</u> 28.60								9.298	12.903	17.037	21.120	25.055	26.618	32.738	
0.023	0.00				.280 18.99	. <u>280</u> 18.99		<u>.432</u> 28.60	<u>.432</u> 28.60							8.686	9.298	12.937	17.037	21.120	25.055		32.738	
7.625	7.00				<u>.301</u> 23.57	<u>.301</u> 23.57		.500 38.08	<u>.500</u> 38.08									13.690	18.039	22.375	26.558		34.743	
			.250 22.38	. <u>277</u> 24.72	. <u>322</u> 28.58	. <u>322</u> 28.58	.406 35.67	. <u>500</u> 43.428	. <u>500</u> 43.428									16.912	22.382	27.812	33.072	35.170	43.428	
8.625	8.00		.250 22.38	. <u>277</u> 24.72	.322 28.58	.322 28.58	.406 35.67	. <u>500</u> 43.428	. <u>500</u> 43.428							11.358		16.956	22.382	27.812	33.072		43.428	53.450
9.625	9.00				.342 33.94	.342 33.94		.500 48.77	.500 48.77									18.916	25.055	31.158	37.081	39.446	48.773	60.131
10.750	10.00		. <u>250</u> 28.06	<u>.307</u> 34.27	. <u>365</u> 40.52	.365 40.52	.500 54.79	.594 64.49	<u>.500</u> 54.786									21.171	28.061	34.922	41.591	44.257	54.786	67.648
11.750	11.00		20.00	01.27	. <u>375</u> 45.60	.375 45.60	04.70	.500 60.132	.500 60.132										30.734	38.268	45.600		60.131	74.329
12.00					40.00	4 3.00		00.132	00.132										31.402		46.602		61.468	
12.750	12.00		.250 33.41	.330 43.81	.406 53.575	.375 49.61	.562 73.22		.500										33.406	41.614	49.608	52 200		
			33.41	43.81	53.575	49.61	73.22		65.476															
13.750	13.00	250	312	375	∆ 32	375	594		500										35.077	43.705	52.114	55.481	68.817	
14.000	14.00	.250 36.75	. <u>312</u> 45.65	. <u>375</u> 54.62	.438 63.36	. <u>375</u> 54.62	. <u>594</u> 85.13		.500 72.158										36.747	45.796	54.619	58.154	72.158	89.36
16.000	16.00	.250 42.09	<u>.312</u> 52.32	. <u>375</u> 62.64	. <u>500</u> 82.848	. <u>375</u> 62.64			. <u>500</u> 82.848										42.092	52.488	62.637	66.706	82.848	102.72
18.000	18.00	.250 47.44	<u>.312</u> 58.99	<u>.438</u> 82.23	. <u>562</u> 104.76	<u>.375</u> 70.65			.500 93.54										47.437		70.654	75.258	95.540	116.08
20.000	20.00	.250 52.78	. <u>375</u> 78.67	. <u>500</u> 104.23	. <u>593</u> 123.23	<u>.375</u> 78.67			. <u>500</u> 104.23										52.782		78.672	83.810	104.228	129.44

Atlas ABC Corp (Atlas Tube Chicago) 1855 East 122nd Street Chicago, Illinois, USA

Chicago 60633

Tel: 800.733.5683 Fax: 773.646.6128 Ref. B/L: Date: Customer:

MILL TEST REPORT

Material: 16.000x500'0"0(1x1)RALC H940 A2523									Material	. NO.	KIOOOC		Made in: USA Melted in: USA					
Sales ord	ales order:																	
Heat No:	С	Mn	Ε	?	S	Si	Al	Cu	Cb	Мо		Ni	Cr	V	Ti	В	N	
T84793	0.190	0.760	0.00	0.	007	0.014	0.045	0.030	0.005	0.00	3 0.	010	0.020	0.001	0.001	0.000	0.00	
Bundle No M900292866		Yield Tensil 061040 Psi 074400								ifica A252-9		. .	CE: 0.33			1		
	Test Sample _lbs Temp Size		Absorb Energy FT-LB:		yl Energ		gy2 Energy3		Avg FT-LBS	i			Shear Area3	_				
20 0 E	10x10	mm	50		80		30				50	100	50					

Tested for safety

Quality management takes top priority in our facilities. Our in-house metallurgical engineer provides steel analysis, ultrasonic testing and complete technical assistance. Upon request, you will receive our original mill test report for every bundle, including details on complete heat traceability, chemical analysis, tensile properties and Charpy impact testing, so you know your product is guaranteed to perform.

Atlas Mill Test Reports

- Complete heat traceability
- Chemical analysis
- Tensile properties
- Charpy impact testing

Carbon and HSLA Coil Material

- BOF-integrated mill
- EAF mini mill

AWS D1.1 Prequalified Base Materials Various Welding Processes

- SMAW
- SAW
- GMAW
- FCAW

Metallurgical Engineer on Staff

- Technical assistance
- Product testing
- Steel analysis
- In-house NDT/ultrasonic testing

1855 East 122nd Street Chicago, IL 60633

800.733.5683 piling@atlastube.com atlaspipepiles.com

Corporate Office

227 West Monroe Street Suite 2600 Chicago, IL 60606

312.275.1600 info@zekelman.com zekelman.com

About Atlas Tube

Atlas Tube produces a wide range of steel tubular products and is the leading provider of hollow structural sections (HSS) in North America. Other offerings include HSS Design Tools, straight-seam electric resistance weld (ERW) pipe piling and Epox Z Kote® powder primed tubing.

For more information, contact Atlas Tube at:

800.773.5683 or info@atlastube.com

Or, visit our website at atlastube.com